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ISBN 9789513927844
ISSN 1456436X



Test Problems for Large-Scale
Nonsmooth Minimization∗

Napsu Karmitsa†

Abstract

Many practical optimization problems involve nonsmooth (that is, not nec-
essarily differentiable) functions of hundreds or thousands of variables with
various constraints. However, there exist only few large-scale academic test
problems for nonsmooth case and there is no established practice for test-
ing solvers for large-scale nonsmooth optimization. For this reason, we now
collect the nonsmooth test problems used in our previous numerical exper-
iments and also give some new problems. Namely, we give problems for
unconstrained, bound constrained, and inequality constrained nonsmooth
minimization.

1 Introduction

Many practical optimization problems involve nonsmooth functions with large
amounts of variables (see, e.g., [1, 2, 14]). However, there is no established prac-
tice for testing solvers for large-scale nonsmooth optimization and only few large-
scale nonsmooth academic test problems exist. In this paper, we give a collection
of problems for large-scale nonsmooth minimization. The general formula for these
problems is written by

{

minimize f(x)

subject to x ∈ G,
(1)

where the objective function f : R
n → R is supposed to be locally Lipschitz contin-

uous on the feasible region G ⊂ R
n and the number of variables n is supposed to be

large. Note that no differentiability or convexity assumptions are made.
We shall describe three groups of nonsmooth test problems: unconstrained (G =

R
n in (1), see Section 2), bound constrained (G = {x ∈ R

n | xl
i ≤ xi ≤ xu

i for all i =
1, . . . , n} in (1), see Section 3), and inequality constrained (G = {x ∈ R

n | gj(x) ≤
0 for all j = 1, . . . , p} in (1), see Section 4).

∗The work was financially supported by University of Jyväskylä.
†Department of Mathematical Information Technology, PO Box 35 (Agora), FI-40014 University

of Jyväskylä, Finland, hamasi@mit.jyu.fi
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2 Unconstrained problems.

In this section we present 10 nonsmooth unconstrained (G = R
n in (1)) minimiza-

tion problems first introduced in [7]. The problems have been constructed either by
chaining and extending small existing nonsmooth problems or by “nonsmoothing”
large smooth problems (that is, for example, by replacing the term x2

i by |xi|). All
these problems can be formulated with any number of variables. We first give the

formulation of the objective function f and the starting point x1 = (x
(1)
1 , . . . , x

(1)
n )T

for each problem. Then, we collect some details of the problems as well as the refer-
ences to the original (small-scale) problems in Table 1.

2.1. Generalization of MAXQ

f(x) = max1≤i≤n x2
i .

x
(1)
i = i, for i = 1, . . . , n/2 and

x
(1)
i = −i, for i = n/2 + 1, . . . , n.

2.2. Generalization of MXHILB

f(x) = max1≤i≤n

∣

∣

∣

∑n
j=1

xj

i+j−1

∣

∣

∣
.

x
(1)
i = 1.0, for all i = 1, . . . , n.

2.3. Chained LQ

f(x) =
∑n−1

i=1 max
{

−xi − xi+1,−xi − xi+1 + (x2
i + x2

i+1 − 1)
}

.

x
(1)
i = −0.5, for all i = 1, . . . , n.

2.4. Chained CB3 I

f(x) =
∑n−1

i=1 max
{

x4
i + x2

i+1, (2 − xi)
2 + (2 − xi+1)

2, 2e−xi+xi+1

}

.

x
(1)
i = 2.0, for all i = 1, . . . , n.

2.5. Chained CB3 II

f(x) = max
{

∑n−1
i=1

(

x4
i + x2

i+1

)

,
∑n−1

i=1 ((2 − xi)
2 + (2 − xi+1)

2) ,
∑n−1

i=1 (2e−xi+xi+1)
}

.

x
(1)
i = 2.0, for all i = 1, . . . , n.
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2.6. Number of active faces

f(x) = max1≤i≤n { g (−
∑n

i=1 xi) , g(xi) },

where g(y) = ln (|y| + 1).

x
(1)
i = 1.0, for all i = 1, . . . , n.

2.7. Nonsmooth generalization of Brown function 2

f(x) =
∑n−1

i=1

(

|xi|
x2

i+1
+1 + |xi+1|

x2
i +1

)

.

x
(1)
i = 1.0, when mod (i, 2) = 0 and

x
(1)
i = −1.0, when mod (i, 2) = 1, i = 1, . . . , n.

2.8. Chained Mifflin 2

f(x) =
∑n−1

i=1

(

−xi + 2
(

x2
i + x2

i+1 − 1
)

+ 1.75
∣

∣x2
i + x2

i+1 − 1
∣

∣

)

.

x
(1)
i = −1.0, for all i = 1, . . . , n.

2.9. Chained crescent I

f(x) = max
{

∑n−1
i=1

(

x2
i + (xi+1 − 1)2 + xi+1 − 1

)

,
∑n−1

i=1

(

−x2
i − (xi+1 − 1)2 + xi+1 + 1

)}

.

x
(1)
i = 2.0, when mod (i, 2) = 0 and

x
(1)
i = −1.5, when mod (i, 2) = 1, i = 1, . . . , n.

2.10. Chained crescent II

f(x) =
∑n−1

i=1 max
{

x2
i + (xi+1 − 1)2 + xi+1 − 1,

−x2
i − (xi+1 − 1)2 + xi+1 + 1

}

.

x
(1)
i = 2.0, when mod (i, 2) = 0 and

x
(1)
i = −1.5, when mod (i, 2) = 1, i = 1, . . . , n.

The details of the problems 2.1 – 2.10 are given in Table 1, where p denotes the
problem number, f(x∗) is the minimum value of the objective function, and the
symbols “−” (nonconvex) and “+” (convex) denote the convexity of the problems.
In addition, the references to the original problems in each case are given in Table 1.
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Table 1: Unconstrained problems.

p f(x∗) Convex Original problem Ref.

2.1 0.0 + MAXQ, n = 20 [15]
2.2 0.0 + MXHILB, n = 50 [10]

2.3 −(n − 1)21/2 + LQ, n = 2 [16]
2.4 2(n − 1) + CB3, n = 2 [3]
2.5 2(n − 1) + CB3, n = 2 [3]
2.6 0.0 − Number of active faces [5]
2.7 0.0 − Generalization of Brown function [4]
2.8 varies∗ − Mifflin 2, n = 2 [6]
2.9 0.0 − Crescent, n = 2 [9]
2.10 0.0 − Crescent, n = 2 [9]

* f(x∗) ≈ −34.795 for n = 50, f(x∗) ≈ −140.86 for n = 200, and f(x∗) ≈ −706.55 for n = 1000.

3 Bound constrained problems.

In this section we describe 10 nonsmooth bound constrained problems (G = {x ∈
R

n | xl
i ≤ xi ≤ xu

i for all i = 1, . . . , n} in (1)). Bound constrained problems are
easily constructed from the problems given in Section 2 (or in [7]) by inclosing the
additional bounds

x∗
i + 0.1 ≤ xi ≤ x∗

i + 1.1 for all odd i.

Here x
∗ denotes the solution point for the unconstrained problem.

If the starting point x1 = (x
(1)
1 , . . . , x

(1)
n )T given in Section 2 is not feasible, we

simply project it to the feasible region (if a strictly feasible starting point is needed
an additional safeguard of 0.0001 may be added). The convexity of the bound con-
strained problems is the same as that of unconstrained problems (see Table 1).

3.1. Bound constrained generalization of MAXQ

f(x) = max1≤i≤n x2
i .

0.1 ≤ xi ≤ 1.1 when mod (i, 2) = 0, i = 1, . . . , n.

x
(1)
i = 1.1, for i = 1, . . . , n/2, when mod (i, 2) = 0,

x
(1)
i = i, for i = 1, . . . , n/2, when mod (i, 2) = 1,

x
(1)
i = 0.1, for i = n/2 + 1, . . . , n, when mod (i, 2) = 0, and

x
(1)
i = −i, for i = n/2 + 1, . . . , n, when mod (i, 2) = 1.
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3.2. Bound constrained generalization of MXHILB

f(x) = max1≤i≤n

∣

∣

∣

∑n
j=1

xj

i+j−1

∣

∣

∣
.

0.1 ≤ xi ≤ 1.1 when mod (i, 2) = 0, i = 1, . . . , n.

x
(1)
i = 1.0, for all i = 1, . . . , n.

3.3. Bound constrained chained LQ

f(x) =
∑n−1

i=1 max
{

−xi − xi+1,−xi − xi+1 + (x2
i + x2

i+1 − 1)
}

.

1√
2

+ 0.1 ≤ xi ≤
1√
2

+ 1.1 when mod (i, 2) = 0, i = 1, . . . , n.

x
(1)
i = 1√

2
+ 0.1, when mod (i, 2) = 0 and

x
(1)
i = −0.5, when mod (i, 2) = 1, i = 1, . . . , n.

3.4. Bound constrained chained CB3 I

f(x) =
∑n−1

i=1 max
{

x4
i + x2

i+1, (2 − xi)
2 + (2 − xi+1)

2, 2e−xi+xi+1

}

.

1.1 ≤ xi ≤ 2.1 when mod (i, 2) = 0, i = 1, . . . , n.

x
(1)
i = 2.0, for all i = 1, . . . , n.

3.5. Bound constrained chained CB3 II

f(x) = max
{

∑n−1
i=1

(

x4
i + x2

i+1

)

,
∑n−1

i=1 ((2 − xi)
2 + (2 − xi+1)

2) ,
∑n−1

i=1 (2e−xi+xi+1)
}

.

1.1 ≤ xi ≤ 2.1 when mod (i, 2) = 0, i = 1, . . . , n.

x
(1)
i = 2.0, for all i = 1, . . . , n.

3.6. Bound constrained number of active faces

f(x) = max1≤i≤n { g (−
∑n

i=1 xi) , g(xi) },

where g(y) = ln (|y| + 1).

0.1 ≤ xi ≤ 1.1 when mod (i, 2) = 0, i = 1, . . . , n.

x
(1)
i = 1.0, for all i = 1, . . . , n.
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3.7. Bound constrained nonsmooth generalization of Brown function 2

f(x) =
∑n−1

i=1

(

|xi|
x2

i+1
+1 + |xi+1|

x2
i +1

)

.

0.1 ≤ xi ≤ 1.1 when mod (i, 2) = 0, i = 1, . . . , n.

x
(1)
i = 1.0, when mod (i, 2) = 0 and

x
(1)
i = −1.0, when mod (i, 2) = 1, i = 1, . . . , n.

3.8. Bound constrained chained Mifflin 2

f(x) =
∑n−1

i=1

(

−xi + 2
(

x2
i + x2

i+1 − 1
)

+ 1.75
∣

∣x2
i + x2

i+1 − 1
∣

∣

)

.

0.68 ≤ x2 ≤ 1.68,
1√
2

+ 0.1 ≤ xi ≤
1√
2

+ 1.1 when mod (i, 2) = 0, i = 3, . . . , n − 1,

0.1 ≤ xn ≤ 1.1.

x
(1)
2 = 0.68,

x
(1)
i = 1√

2
+ 0.1, when mod (i, 2) = 0, (i > 2), and

x
(1)
i = −1.0, when mod (i, 2) = 1, i = 1, . . . , n.

3.9. Bound constrained chained crescent I

f(x) = max
{

∑n−1
i=1

(

x2
i + (xi+1 − 1)2 + xi+1 − 1

)

,
∑n−1

i=1

(

−x2
i − (xi+1 − 1)2 + xi+1 + 1

)}

.

0.1 ≤ xi ≤ 1.1 when mod (i, 2) = 0, i = 1, . . . , n.

x
(1)
i = 1.1, when mod (i, 2) = 0 and

x
(1)
i = −1.5, when mod (i, 2) = 1, i = 1, . . . , n.

3.10. Bound constrained chained crescent II

f(x) =
∑n−1

i=1 max
{

x2
i + (xi+1 − 1)2 + xi+1 − 1,

−x2
i − (xi+1 − 1)2 + xi+1 + 1

}

.

0.1 ≤ xi ≤ 1.1 when mod (i, 2) = 0, i = 1, . . . , n.

x
(1)
i = 1.1, when mod (i, 2) = 0 and

x
(1)
i = −1.5, when mod (i, 2) = 1, i = 1, . . . , n.
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4 Inequality constrained problems.

Finally, we describe eight nonlinear or nonsmooth inequality constraints (or con-
straint combinations). Some of them (constraints 4.1 – 4.5) have been initially given
in [8]. The constraints can be combined with the problems given in Section 2 to
obtain 80 inequality constrained problems (G = {x ∈ R

n | gj(x) ≤ 0 for all j =
1, . . . , p} in (1)). The constraints are selected such that the original unconstrained
minima of problems in Section 2 are not feasible. Note that, due to nonconvexity
of the constraints, all the inequality constrained problems formed this way are non-
convex.
The starting points x1 = (x

(1)
1 , . . . , x

(1)
n )T for inequality constrained problems are

chosen to be strictly feasible. In what follows, the starting points for the problems
with constraints are the same as those for problems without constraints (see Sec-
tion 2) unless stated otherwise.

4.1. Modification of Broyden tridiagonal constraint I
(for original Broyden tridiagonal constraint, see, e.g., [12])

gj(x) = (3.0 − 2.0xj+1)xj+1 − xj − 2.0xj+2 + 1.0, j ∈ [1, n − 2],

for problems 2.1, 2.2, 2.6, 2.7, 2.9, and 2.10 in Section 2 and

gj(x) = (3.0 − 2.0xj+1)xj+1 − xj − 2.0xj+2 + 2.5, j ∈ [1, n − 2],

for problems 2.3, 2.4, 2.5, and 2.8 in Section 2.

x
(1)
i = 2.0, i = 1, . . . , j + 2, for problems 2.3 and 2.8 in Section 2,

x
(1)
i = 1.0, i = 1, . . . , j + 2, for problems 2.9 and 2.10 in Section 2, and

x
(1)
i = −1.0, i ≤ j + 2 and mod(i, 2) = 0, for problem 2.7 in Section 2.

4.2. Modification of Broyden tridiagonal constraint II

g1(x) =
∑n−2

i=1 ((3.0 − 2.0xi+1)xi+1 − xi − 2.0xi+2 + 1.0) ,

for problems 2.1, 2.2, 2.6, 2.7, 2.9, and 2.10 in Section 2 and

g1(x) =
∑n−2

i=1 ((3.0 − 2.0xi+1)xi+1 − xi − 2.0xi+2 + 2.5) ,

for problems 2.3, 2.4, 2.5, and 2.8 in Section 2.

x
(1)
i = 2.0, i = 1, . . . , n, for problems 2.3 and 2.8 in Section 2.
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4.3. Modification of MAD1 I
(for original problem, see, e.g., [13])

g1(x) = max {x2
1 + x2

2 + x1x2 − 1.0, sin x1, − cos x2} ,
g2(x) = −x1 − x2 + 0.5.

x
(1)
1 = −0.5 and

x
(1)
2 = 1.1 for all problems in Section 2.

4.4. Modification of MAD1 II

g1(x) = x2
1 + x2

2 + x1x2 − 1.0,.
g2(x) = sin x1,
g3(x) = − cos x2,
g4(x) = −x1 − x2 + 0.5.

x
(1)
1 = −0.5 and

x
(1)
2 = 1.1 for all problems in Section 2.

4.5. Simple modification of MAD1 I

g1(x) =
∑n−1

i=1

(

x2
i + x2

i+1 + xixi+1 − 2.0xi − 2.0xi+1 + 1.0
)

,

for problems 2.1, 2.2, 2.6, 2.7, 2.9, and 2.10 in Section 2 and

g1(x) =
∑n−1

i=1

(

x2
i + x2

i+1 + xixi+1 − 1.0
)

,

for problems 2.3, 2.4, 2.5, and 2.8 in Section 2.

x
(1)
i = 0.5, i = 1, . . . , n, for problems 2.1, 2.2, 2.6, 2.7, 2.9, and 2.10

in Section 2 and

x
(1)
i = 0.0, i = 1, . . . , n, for problems 2.4, 2.5, and 2.8 in Section 2.

4.6. Simple modification of MAD1 II

gj(x) = x2
j + x2

j+1 + xjxj+1 − 2.0xj − 2.0xj+1 + 1.0, j ∈ [1, n − 1],

for problems 2.1, 2.2, 2.6, 2.7, 2.9, and 2.10 in Section 2 and

gj(x) = x2
j + x2

j+1 + xjxj+1 − 1.0, j ∈ [1, n − 1],

for problems 2.3, 2.4, 2.5, and 2.8 in Section 2.
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x
(1)
i = 0.5, i = 1, . . . , j + 1, for problems 2.1, 2.2, 2.6, 2.7, 2.9, and 2.10

in Section 2 and

x
(1)
i = 0.0, i = 1, . . . , j + 1, for problems 2.4, 2.5, and 2.8 in Section 2.

4.7. Modification of P20 from UFO collection I
(for original problem, see, e.g., [11])

gj(x) = (3.0 − 0.5xj+1)xj+1 − xj − 2.0xj+2 + 1.0, j ∈ [1, n − 2],

x
(1)
i = 2.0, i = 1, . . . , j + 2, for problems 2.2, 2.3, 2.6, 2.7, 2.9, and 2.10

in Section 2 and

x
(1)
i = −2.0, i = 1, . . . , j + 2, for problem 2.8 in Section 2.

4.8. Modification of P20 from UFO collection II

g1(x) =
∑n−2

i=1 ((3.0 − 0.50xi+1)xi+1 − xi − 2.0xi+2 + 1.0).

x
(1)
i = 2.0, i = 1, . . . , n, for problems 2.2, 2.3, 2.6, 2.7, and 2.8

in Section 2
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